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Solvable potentials associated with su(1,l) algebras: 
a systematic study 
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Sloane Physics Laboratory, Yale University, PO Box 6664, New Haven. CT 06511. USA 

Received 23 August 1993, in final form 23 March 1994 

Abstract We consider a specific differential realization of the sn(1, I) algebra and use 
it to explore such algebraic structures associated with shape-invariant potentials. Our 
approach combines elements of various methods of solving the Schriidinger equation. such 
as supexsymmetric quantum mechanics (or the factorization method), algebraic techniques and 
special-function theory. In fact, it amounts to reformulating transformations mapping the 
Sduadinger equation into the differential equation of orthogonal polynomials in group-theoretical 
terms. Our Systematic study recovers a number of earlier results in a natural unified way and also 
leads to new findings. The procedure presented here implicitly wntains a similar treatment of 
the compact su(2) algebra as well. Possible generalizations of this approach (involving different 
realizations of the su(l .1)  algebra. other algebraic structures and larger classes of potentials) 
a~ also outlined. 

1. Introduction 

Exactly solvable quantum mechanical potentials have attracted much attention since the 
early days of quantum mechanics, and the Schriidinger equation has been solved for a large 
number of potentials by employing a variety of approaches. The solutions of certain one- 
dimensional potentials have been given by the factorization method [1,2] and by using the 
powerful machinery of p u p  theory [3,4], for example. More recent developments which 
generated renewed interest in solvable potentials were the introduction of the potential- 
group method [5] and supersymmetric quantum mechanics (SUSYQM) [6]. Both of these 
approaches give simultaneous solution of a whole series of potentials each having different 
depth and (almost) identical bound-state energy spectra Although the methods mentioned 
above usually focus on different aspects of solvable potentials, they are not independent 
from each other. Supersymmetric quantum mechanics, for example, has been recognized 
as the reformulation of the factorization method [7], which, in turn, can be considered to 
be an application of the Darboux transformation method of solving second-order ordinary 
differential equations [SI. (See, for example [91 and references therein.) In fact, most 
of the approaches mentioned above can be formulated in terms of ' d m t '  methods of 
solving the Schrodinger equation, i.e. by rewriting them as transformations mapping the 
original Schrodinger equation into the second-order differential equation of some special 
function of mathematical physics. Systematic studies of these transformations have been 
given, for example, by Bhattacharjie and Sudarshan [lo] and by Natanzon [ll] regarding 
the confluent hypergeometric and hypergeometric functions. The relation of these methods 
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to certain algebraic techniques has been discussed by Corder0 et al 1121 and Wu et al 
113,141, for example. In an extensive survey based on the Lie theory of special functions 
Miller [3] also discussed this connection and linked it with the factorization method. More 
recently the relation between the formalism of supersymmetric quantum mechanics and that 
followed by the authors of [I 11 and [lo] has been discussed [15,16]. These studies also lead 
to (inequivalent) classification schemes of potentials admitting shape-invariance, a concept 
inspired by the SUSYQM approach [17]. The range of these potentials, which includes the 
most well known textbook examples for solvable quantum mechanical problems, was later 
found to he identical to the set of potentials obtained from the factorization method [7]. 

Although the intertwining relationship between various algebraic approaches, special- 
function theory and factorization (or SIJSYQM) has been investigated extensively, most of 
these studies concentrated on specific potentials and/or specific aspects of this problem. In 
the present study we try to combine these approaches by performing a systematic search for 
su(l.1) algebraic shxctures associated to shape-invariant potentials. In particular, we start 
from a specific differential realization of the su(1, 1) algebra (inspired by the potential-group 
method [5]), which can be used to derive the second-order differential equation of orthogonal 
polynomials. The second-order differential operator which appears in the differential 
equation of these functions is expressed in terms of the Casimir operator of the su(1,l) 
algebra. Following Wu et al [13,14] we then apply variable and similarity transformations 
to the group generators in order to recover the Schriidinger equation for various potentials. 
If these kansformations leave the su(1,l) algebra intact, we get solvable potentials which 
are automatically associated with an su(l.1) algebra. This transformation procedure can 
be made systematic if we employ the variable transformations identified from a SUSYQM- 
related study which recovered shape-invariant potentials from the differential equations of 
orthogonal polynomials [16]. In this sense we can formulate these transformations in the 
language of group theory and use all the powerful machinery which is associated to it. 

The relation between su(1,l)- so(2, 1) algebraic shxctures and solvable potentials has 
been studied extensively [4,5,12,18-261. Being the elements of a non-compact algebra, 
the J+ and J- ladder operators are able to connect members of an infinite sequence of 
basis states. In these applications this non-compact algebra appears either as a spectrum- 
generating algebra [12,18-20,24,25], or as a construction identified as potential algebra 
[5,21,24,27]. (Symmetry algebras, which account for the degeneracies of a large variety of 
quantum mechanical systems (see, for example 1281 and references therein for a review) are 
not expected to be relevant to the simple one-dimensional potential problems we investigate 
here.) The earlier works mentioned above usually focus on individual potentials, consider 
various realizations of the su(1,l)  algebra and occasionally describe more general algebras 
which contain su(1,I) as a subalgebra. We shall discuss the relation of these results to 
our systematic approach, which we expect to recover a significant part of these earlier 
developments in a unified way. 

The su(1,l) (E 4 2 . 1 )  N_ sl(2, R)) algebra is the non-compact real form of the 
complex semi-simple Lie algebra A1 141. Its compact version su(2) (= so(3)) has also 
been used extensively in the description of various physical problems. (See. for example. 
14,291 and references therein.) Our approach can also be applied to this compact algebra 
in a straightforward way, furthermore, we shall see that it automatically leads to su(2) 
algebras in some cases. The reason why we present the formalism within the framework 
of the non-compact su(1,l) algebra is that our work has mainly been motivated by the 
potential-group method 151 (and its similarity with SUSYQM), where the non-compact nature 
of the algebra plays an important role. 

It has to be mentioned that our present approach is not the most general one. Here 
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we considered only the su(l .1) algebra and only one possible differential realization of 
it. Furthermore, we consider only those transformations, which recover the trivial shape- 
invariant potentials from the differential equation of the orthogonal polynomials L f ) ( x ) ,  
H,(x) ,  PF””(x) and Cp)(x). Nevertheless, this method can be generalized in various 
directions: further realizations and larger algebras could be taken, and transformations 
leading to non-shape-invariant potentials could also be considered. However, for the sake 
of compactness we leave these options for a further study. 

The arrangement of this paper is as follows. In section 2 we discuss the relation between 
SUSYQM and solvable potentials. In section 3 we introduce the differential realization of the 
su(1,l) algebra we apply later on, and also describe the effect of variable and similarity 
transformations on its generators. Our main results are contained in section 4, where we 
combine the contents of the two previous sections and use them to formulate in algebraic 
terms the transformation of the differential equations of orthogonal polynomials into the 
Schriidinger equation with shape-invariant potentials. Finally, we summarize our results in 
section 5. 

2. Supersymmetric quantum mechanics and solvable potentials 

Starting from a superalgebra of operators and their matrix realization, supersymmetric 
quantum mechanics offers an elegant and straightforward way of relating pairs of isospectral 
one-dimensional quantum mechanical potentials. (See, for example, [6] for the details.) 
A compact way of writing the Schriidinger equation (with fi = 2m = 1) for these 
supersymmetric partner potentials is 

where V-(x) and V+(x) are expressed in terms of the superpotential W ( x )  as 

dW 
dx 

V*(x) = WZ(X) f - . 
It is easy to show 161 that in the simplest case supersymmetry manifests itself in the following 
degeneracy of the energy levels of the supersymmetric partner potentials: 

n = 0, I ,  2, .  . . En+, (-) - - E(+) n EA-) = 0 (2.3) 

and that the degenerate eigenstates are connected by the linear differential operators 

(2.4) 

where W ( x )  is related to the ground-state wavefunction of V-(x)  [6]. 
An immediate practical consequence of these results is that whenever the ground-state 

wavefunction of a potential V-(x )  is known, its supersymmetric partner V+(x) can readily 
be constructed, and this potential will have the same energy eigenvalues as the original one, 
except that its ground state will be degenerate with E;-) .  In fact, if all the wavefunctions 
of V-(x)  are known, a whole series of potentials can be constructed this way, each having 
one less bound state than the previous one. Adjacent members of this series of potentials 
are supersymmetric partners. 
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It was soon noticed that supersymmetric partner potentials often depend on the 
coordinate in the same way, and differ only in some parameters which set their depth. 
Gendenshtein E171 defined thcse ‘shape-invariant’ potentials by the relationship 

V+(x, ao) - V-(x, U ] )  E W’(X, U O )  + W’(X,  %) - W2(x,a l )  t W’(X,  ai) = R(Q)  (2.5) 
where a0 and a1 stand for potential parameters in the supersymmetric partner potentials, 
and R(a) is a constant. The two sets of potential parameters a0 and U ,  are connected 
by simple mathematical formulae. It has been shown that the energy eigenvalues [17] 
and the wavefunctions [30] of shapeinvariant potentials can be constructed practically 
without solving the Schrodinger equation, simply by utilizing the defining equation of shape 
invariance and the properties of the A t  and A operators. 

Many of the well known solvable potentials of quantum mechanics were found to have 
shape-invariant properties. In fact, it tumed out that shape-invariant potentials are exactly 
the same as the ones that can be obtained from the factorization method [1,2]. Several 
attempts have been made to find and classify all shapeinvariant potentials [15,16,31], and 
the results sugested that besides the 12 known potentials there were no others. These studies 
also clarified the relationship between shape invariance and solvability [U], and identified 
shape-invariant potentials as special subclasses of the general Natanzon [ 111 and Natanzon 
confluent 111,251 potentials. These potentials depend on six parameters and their solutions 
contain hypergeometric and confluent hypergeometric functions, respectively. 

We mention here that recently a new family of potentials satisfying the (2.5) shape- 
invariance condition has been identified [32]. These potentials have more complicated 
mathematical structure than the shape-invariant potentials found originally. We shall call 
the latter ones trivial shape-invariant potentials for further reference. 

Here we use an old method of solving )the Schrddinger equation to demonstrate how a 
wide range of solvable potentials can be recovered within the framework of supersymmetric 
quantum mechanics. Originally this procedure was used [IO] to derive only some known 
potentials, but it can be proved that all the Natanzon and Natanzon confluent potentials 
could also have been derived from it. It was later connected to the formalism of SUSYQM 
WI. 

The solutions of the onedimensional Schrodinger equation (with ii = 2m = 1) 

d2Y - + ( E  - V ( x ) ) Y ( x )  = 0 
drz 

are generally written as 

Y(x) = f ( x ) F ( ~ ( x ) )  (2.7) 
where F(y) is a special function which satisfies a second-order differential equation 

Here Q(y) and R(y) are well known, for any specified special function F(y), while f ( x )  
and y(x) are some functions to be determined. After some straightforward algebra we arrive 
at the following expression [161: 

( 2 . 9 ~ )  
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Equation (2.9b) relates the only undetermined function y(x )  to the difference of the energy 
E and the potential V ( x ) .  Observing that the energy term E on the left-hand side of 
(2.9) represents a constant, the authors of [lo] equated certain terms of the right-hand 
side with a constant (denoted by C for further reference) to account for it. This results 
in simple differential equations for y ( x ) .  The authors in [lo] applied this method to the 
hypergeometric and confluent hypergeometric function and obtained the solutions of some 
simple potentials. 

As described in [16], equation (2 .9~)  offers a straightfonvard connection to the 
formalism of.supersymmetric quantum mechanics. In particular, whenever R(y)  vanishes 
for the ground state, we have 

dW 
dr E - V ( x )  = -WZ(x) + - (2.10) 

which corresponds to a potential V-(x)  from (2.2) having a ground state with zero energy. 
In [I61 this method was applied to the orthogonal polynomials (P$"'(y), Lp)(y) and 
H,(y)) which, indeed, fulfill the R.=o(y) = 0 requirement, and the results were used to 
derive a straightforwad classification scheme of the trivial shape-invariant potentials. In 
addition to shape-invariant potentials, some general Natanzon class [ l l ]  potentials have also 
been identified [33,34] by this method. See [34] for an example for this procedure. 

3. The SU(1,l) group and solvable potentials 

The generators of the non-compact SU(1,I) group obey the commutation relations 

[ J r ,  J i 1  = *J* 

[J+,  J-] = -2Jz 

and are related to the Casimir operator as 

2 Cz = -J+J- + J, - Jz 
= -J-J+ + J; + J~ 

(3 .1~)  
(3.16) 

The eigenstates of CZ and J, (with eigenvalues j ( j  + 1) and m ,  respectively) serve as a 
basis for the irreducible representations of SU(1, 1). and can he labelled by [jm). 

This relatively simple mathematical construction can be used to recover a wide range of 
physical results. Introducing the concept of the potential group [SI Alhassid el a1 suggested 
that the discrete and continuous unitary irreducible representations of this group can be 
identified with bound and scattering states of a wide range of quantum mechanical potentials 
in one dimension. In this case the generators are realized in terms of linear differential 
operators, and the Hamiltonian is related to the Casimir operator as 

H = -C, - 4 '  (3.3) 

The physical interpretation of this group-theoretical result is that the irreducible 
representations of the SU(1,l) potential group are formed by states which have the same 
energy eigenvalues (E = - ( j  + f)'), but correspond to different potential strength, which 
is related to m. In particular, bound states of these potentials belong to the discrete unitary 
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irreducible representation of the SU(1,l) group called discrete principal series DT, for 
which j can assume integer or half-integer values, while the allowed values of m are 

m = - j .  - j + l ,  - j + 2  ,.... (3.4) 

Scattering states are assigned to continuous unitary irreducible representations of SU(1,l). 
These results were used to derive in a straightforward way the solution of the Morse, 

Poschl-Teller and the Ginocchio potentials [5,22]. The connection of the SU(1 , l )z  
SO(2,l) and the S0(2,2) potential groups to the general Natanzon class [ll] potentials 
has also been discussed 113,141. 

Shortly after the introduction of SU(1,l) as a potential group, Sukumar also used a 
differential realization of the su(1,l) algebra to generate solvable potentials [23]. Similarly 
to Alhassid et a1 [5] he considered the basis states 

(3.5) imQ . Ijm) = 3-G) = e  +,m(x) 

but allowing a more general form of the generators 

and 

a 
Jz = -% (3.6b) 

he showed that they satisfy (3.lb) if 

(3.7a) df fZ(x)  - h(x) -  = 1 dx 
and 

dc 
dx h(x)- - c(x)  f ( x )  = 0 (3.7b) 

hold. (Equation (3.1~)  is automatically satisfied by this construction.) In terms of this 
realization the Casimir operator has the form 

(3.8) 

Sukumar used these results to recover the potentials discussed by Alhassid et al as special 
cases of a wider class of potentials. 

An interesting way of extending the range of potentials that can be described within the 
potential-group formalism has also been pointed out by Wu er aZ[13,14,35], who noted that 
the su(1,l) algebra (3.1) is maintained if one applies a variable or similarity transformation 
of the generators J*, Jz and the basis l jm).  This is easily verified within the more general 



Potentials associated with su(1, I) algebras 3815 

expression of the generators in (3.6). In particular, a variable transformation z = z ( x )  
changes the functions h(x) ,  g(x) ,  f ( x ) ,  c(x)  and the basis states in the following way: 

(3.9) 

while a similarity transformation 

.Ia = 3.Ja3-' (or = +, -, z )  (3.10) 

where 3 = I / u ( x )  represents a multiplication with a function l/u(x) (written in this form 
for the sake of convenience) leads to the following results: 

(3.11) 
I 

'@jm(x) + '&jm(x) = - ' @ j m ( x ) .  

It is obvious that whenever (3 .7~)  and 3.7(b) hold for the original set of equations, 
similar relations will hold for the transformed functions too. However, this requirement 
alone does not guarantee that the su(1,l) algebra remains intact. If the functions governing 
transformations (3.9) and (3.1 1) (i.e. z ( x )  and U(;)) depend explicitly on m, the eigenvalue 
of generator .IzI the commutation relations cease to be valid in the most general case, 
and will hold only when the corresponding operator equation is applied to basis states 
labelled with m. This, of course, means that the algebraic construction becomes obsolete, 
nevertheless, these transformations and the differential equations obtained from them may 
be of interest in their own right. Furthermore, besides cases in which such m-dependent 
transformations destroy an existing su(1,l) algebra, we shall see that there are examples for 
the reverse mechanism, too. In the earlier applications of transformations (3.9) and (3.11) 
these complications have been avoided by Alhassid et al [22], who derived the Ginocchio 
potential [36] from the potential-group approach. 

It can also be Seen that transformations (3.9) and (3.11) can be used to transform the 
generators originally considered by Alhassid eta1 [5,22] (i.e. h(x)  = 1, g(x) = f ( x ) / 2 )  to 
the more general expressions in (3.6). An important implication of selecting an h(x)  other 
than &l  is that one has to redefine the relation of the Casimir operator and the Hamiltonian, 
as the simple equations H = -CZ - a and E = - ( j  + i)' cease to be valid then. The new 
form of the eigenvalue equation is 

= -d ( j  t i)' W(X) (3.12) 
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where d is a constant [35J. This choice really resuIts in the usual form of the Schriidinger 
equation, but, as we shall see later, it may result in cases when H does not commute with 
J+ and J - ,  so the su(1,l) algebra does not play the role of a potential algebra any more. 

Finally, we mention that the mathematical construction presented in this section can be 
used to recover potentials associated with the compact su(2) algebra as well. Thii requires 
only the redefinition of the functions h(x),  f ( x ) ,  g ( x )  and c(x) (and, therefore, also that of 
J*) by multiplying them with the constant imaginary factor i (or -i). This operation changes 
the sign of the right-hand side of (3.7~). but does not affect (3.7b). The expression for the 
Casimir operator in (3.8) also remains valid in its present form: the h(x) + ih(x), . . . , etc 
transformation simply changes the sign of its terms except for the one J,". 

4. Search for su(1,l) algebraic structures related to solvable potentials 

The two methods, SUSYQM and algebraic techniques, represent altemative ways of describing 
the same classes of solvable potentials. In addition to this, there are some closer analogies 
between SUSYQM and the potential-group method. Both approaches connect infinite series 
of potentials which have the same energy eigenvalues, and differ only in their depth, and 
therefore in the number of their bound states. The operators which connect the degenerate 
eigenstates of these potentials have similar structure in SUSYQM and in the potential-group 
method they are both linear differentia operators (see (2.4) and (3.6~)). These similarities 
naturally raise the question whether there exists a connection between SUSYQM and the 
algebraic approach. Here we hy to answer this question by comparing the mathematical 
manipulations used in the two approaches to transform the Schrodinger equation into the 
second-order differential equation of some special function. For SUSYQM these techniques 
have been described in detail in section 2, and here we show that these transformations can 
be formulated within the framework of the algebraic approach too. 

Let us consider a special function F ( y )  which satisfies a second-order differential 
equation of the form (2.8). We can introduce a mathematical construction similar to that 
described in section 3, with the difference that we denote the independent variable by y 
rather than by x .  Constructing the SU(1,l) generators and the Casimir operators in the 
usual way we can introduce the 'null operator' [35] 

X = ( C Z -  j(j+-1)) (4.1) 

which we can use to rewrite the differential equation of the F ( y )  function in terms of the 
Casimir operator of the su(1,l) algebra (see (3.8)): 

(4.2) 
1 dg 

dy 
- f ( Y ) g ( X ) + g 2 ( Y ) + h ( y ) -  - ~ c ( Y ) ~ ( Y ) J ,  -&Y) - j ( j +  I) YjmCY) 

= O .  

After the ( J z )  = m substitution and the separation of the @-dependent part of the 
wavefunction we can easily identify the Q ( y )  and R ( y )  functions of (2.8). 

At this point a two-step procedure can be employed to transform (4.2) into a Schrsdinger 
equation related to an su(l.1) algebra 
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(i) Introduce a variable transformation x = x ( y ) .  
(ii) Select a similarity transformation which eliminates the linear differential term in the 

Hamiltonian obtained after the first step. This can be done by an appropriate choice of 
g ( x )  (see equations (3.1 1) and (4.2)). 

These transformations yield wavefunctions of the form (2.7), which indicates that we have 
accomplished the same transformation as in section 2, and have obtained the same potentials 
as in supersymmetric quantum mechanics. 

Here we apply this two-step procedure to derive the trivial shape-invariant potentials 1161 
within the framework of the algebraic treatment and discuss what role the su(1,l) algebra 
plays in these cases. This requires the construction of su(1,l) algebras from which the 

’ differential equation of orthogonal polynomials can be derived. The variable transformations 
y + x ( y )  then emerge in a straightforward way from the SUSYQM approach to the same 
(shape-invaiiant) potentials 1161. 

4.1. Generalized Luguerre polynomials L$) (y )  

The differential equation of the generalized Laguerre polynomials [37] can be obtained from 
the ‘null operator’ (4.2) with the following choice of the generators J+ and J- and of the 
wavefunctions: 

+ 1 - y )  + J, - - 

where j and m are related to LY and n in fie following way: 

a = - ( Z j + l )  
m -j. + n = 0 , 1 , 2  ,.... 

(4.3a) 

(4.3b) 

(4.4) 

The appropriate variable transformation in the LIE case is defined by y(x )  = b exp(-ax), 
where U = C’” [16]. Performing the similarity transformation used in the second step to 
recover the Schrodinger equation we find that the resulting potential is the Morse potential. 
The potential, the energy eigenvalues and the (unnormalized) wavefunctions are displayed 
in table 1, while tables 2 and 3 show the J+ generators, the SUSYQM laddering operators A, 
At and their effect on the wavefunctions. 

It can be seen from tables 2 and 3 that the J+, J- and At, A operators are essentially 
the same, as they have the same effect on the wavefunctions, and furthermore the su(l.1) 
algebra is the well known potential algebra [SI for the Morse potential. The infinite sequence 
of isospectral potentials described by both the potential-group method and supersymmetric 
quantum mechanics are Morse potentials which have different depth due to parameter m. 
A minor difference between the two sets of operators arises because of the presence of the 
phase factors e*i$ and e”$ in the algebraic construction. We mention here that essentially 
the same results were also obtained from a different differential realization of the su(1,l) 
algebra [21,24]. 

Similar treatment of the LI case [16] recovers the harmonic oscillator potential in three 
dimensions. (See table 1, where the notation or = 1+ 4 and (4.4) has been used.) In contrast 
with the Morse potential, now the su(1,l) and SUSYQM ladder operators (in tables 2 and 
3) are essentially different. A and At  connect states with angular momenta differing by 
one unit. These states, of course, can not be degenerate in the usual description, only in 



the SUSYQM approach, where harmonic oscillator states with different I constitute different 
potentials connected pairwise by supersymmetry, and the energy scales are shifted by one 
unit (lo). The J+ and .I- generators leave the angular momentum intact, and connect states 
with different number of nodes (TI). This operation changes the energy by two units (h). 
so the su(l.1) algebra can not be a potential algebra in this case. This result is related to 
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the fact that h(x) = x j 2  # constant in this case, so the Hamiltonian has the more general 
form of (3.12), and does not necessarily commute with the generators. It, in fact, does not 
commute with the generators in this case, because the constant d in (3.12) depends on m, 
the eigenvalue of Jz. 

Table 2. Explicit fomi of the generators 3- and J+ and their effect on the wavefunctions, 

class Y(X) J* Effect of J+ and J- 

un b exp(-ax) (&& - a  (3, f f )  + qexp(-ax)) J + M w x )  + h + l ( m + l ; x )  

U &' 
HI ( f ) l ' z . x  

PI 

isinh(nx) 

cosh(ax) 

COS(0X) 

coS(2nX) 

cosh(2ax) 

PU 

We mention here that the su(1,l) algebra we have, obtained is similar to (although not 
identical with) the one discussed by h t m n g  1181, who considered a two-dimensional 
realization of this algebra inspired by the work of Miller [3]. Considering yet another 
differential realization, Cooper also arrived at similar results. (See [24] and references 
therein.) We also note that, in contrast with the usual case, j and m are now not integers 
or half-integers, rather they are quarter-integers (see (4.4) and 01 = 1 + i). 

The LII case [I61 represents an interesting situation. The simple y(x)  = ax variable 
transformation (with a = C'I2) and the corresponding similarity transformation results in 
the su(l.1) ladder operators 

" >  ( a x  2 2  
a 

J+ =e*'+ b-+ J - - X  . (4.5) 

The standard procedure, in principle, results in the Coulomb potential, however, this requires 
the substitution a = e2/m, which introduces an m-dependent variable transformation 
(y (x )  = (e2/m)x in this case), and this destroys the su(1,l) algebra, as we have seen 
in section~3. In other words, the problem can only be formulated separately for each value 
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Table 3. Explicit form of the SUSY ladder operators At  and A, and their effect on the 
wavefunctions. ”he operators are displayed in their most general form even when J* could 
not be obtained (UI class) or wuld be obtained for restricted cases only (PI1 class, forb = O),  

LID 

LI 

LII 

HI 

P I  

PI1 

Class y:x) A t  (upper sign), A (lower sign) Effect of At  and A 
~ 

b exp(-ax) 7% + a  (m - 4) - +exp(-ax) Atpn- l (m - I;x) --f h ( m ; x )  

f u J 2  

2 
mX 

($) x 

i sinh(nx) 
cosh(nx) 
cos(nx) 
cos(2ax) 

cosh(2nx) 

mh(ax) 

coth(ax) 

-icot(ox) 

of m,  and the ladder operators in (4.5) (which explicitly depend on m through a themselves) 
can not connect states with different principal quantum number m = n + 1 + 1. Since this 
contradicts the ideas on which the whde algebraic construction is based, we conclude that 
the su(l.1) algebra is not suitable handling this problem in its present form. We note here, 
however, that an su(1,l) algebra can be consmcted for the radial Coulomb problem too, 
by considering a modification of the generators [19,24]. In these cases the change of the 
principal quantum number (in our notation m )  has to be taken care of separately. 

The SUSY ladder operators (shown in table 3) change n and 1 by one unit and leave 
m invariant at the same time. Similarly to the harmonic oscillator (LI) case, the Coulomb 
potential represents a separate problem for each angular momentum 1, and states with 
adjacent values of 1 and the node number are connected by supersymmetry. 

4.2. Hermite polynomials H,(y) 

The differential equation of the Hermite polynomials [37] is obtained from the following 
choice of the SU(1,l)  generators: 

if we prescribe the relations 
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(4.7b) 

It follows from (4.7) that j can be either -a or -$, which implies that (due tom = - j + p )  
n is equal to 2 p  and 2p+ 1 in these two cases, respectively. (Here we reserved n for labelling 
the Hermite polynomials and denoted the non-negative integer m - j with p ,  in order to 
avoid confusion.) 

Applied to the HI case [16], the standard procedure recovers the harmonic oscillator 
potential in one dimension. (see table 1). Tables 2 and 3 contain the appropriate form 
of the SU(1,l) and SUSYQM ladder operators, respectively. The two sets of operators 
are obviously different, and have different effects on the wavefunctions. The SU(1,l) 
generators change n by two units, which, of course, means that they ladder within the same 
SU(1,l) representation, and that the group generators J*, Jz form a spectrum-generating 
algebra. The even and odd oscillator wavefunctions belong to the two infinitedimensional 
irreducible representations labelled by j = -4  and j = -$, respectively. Similarly to the 
three-dimensional harmonic oscillator, these labels are quarter-integers. We note that similar 
results have been obtained in earlier works too, in which, however, different realizations of 
the su(1,l) algebra were considered [38] for the one-dimensional harmonic oscillator. In 
contrast with J+ and J- the SUsYQM ladder operators connect states belonging to different 
parity. 

4.3. Jacobi polynomials P,!@"'(y) 

The differential equation of the Jacobi polynomials [37] can be obtained from (4.2) 
substituting 

(which satisfy the equivalent of (3.7a), (3.7b)), 

and 

cr=ib-m ,9 = -ib -m 

m = - j + n  n =0,  1,2, ... (4.9) 

Note, however, that as g(y) depends explicitly on m, the functions in (4.8~) can not 
be used to construct an su( l ,1 )  algebra similar to that in (3.6). Nevertheless, as we have 
discussed in connection with (3.9) and (3.11) it is possible to recover an su(1,l) algebra 
via suitable transformations which eliminate the m-dependence of the generators. 

It has to be mentioned though, that this su(1,l) algebra consmcted this way is not 
large enough to describe the Jacobi polynomials (or hypergeometric functions) in their most 
general form. As we shall see, this lack of generality manifests itself in this case in the fact 
that only the difference of (Y and ,9 can be changed by the laddering operators which change 
m; the other parameter, b, which is related to the sum of (Y and ,9 maintains its initial value. 

The five shape-invariant potentials belonging to the PI class 1161 can be generated from 
the solutions of the 

(4.10) 
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differential equation, and with the appropriate similarity transformation (3.1 1). This 
transformation eliminates the explicit m-dependence of g(x) ,  therefore the operators built up 
using the resuIting functions can fulfil the su(l .1) commutation relations. These generators 
are displayed in table 2 both in the general form (with unspecified y(x)) and for the five 
individual subcases, while the SUSYQM ladder operators A, AI  are shown in table 3. 

It is apparent from tables 2 and 3 that the SU(1,I) generators J+ and J- have basically 
the same effect on the wavefunctions ai the ladder operators AI and A of SUSYQM; in fact, 
they are essentially the same, apart from some phase factors: This means that the level 
degeneracy of the infinite sequences of potentials in this class can be interpreted in terms 
of the existence of a potential group, but it can also be attributed to supersymmetry. 

We mention here that in the original formulation of the SU(1,l) potential group [5] 
only a restricted version of the first two potentials has been discussed (with b = 0), and the 
more general version was obtained only later by Sukumar [23] and Engelfield and Quesne 
1261. 

The fifth (i.e. the Poschl-Teller) potential has also been discussed within the framework 
of the potential-group method [13], but in that case the potential algebra was so(2, 2), which 
contains su(1,l) N so(2, 1) as a subalgebra. This more general algebraic structure allows 
laddering between a wider range of potentials by changing the strength of the two terms 
of the potential independently, while in the restricted case the SU(I,I)  generators are able 
to change these parameters in a correlated way only. We mention here that this particular 
potential has also been obtained from a more general realization of the su(l.1) algebra in 
[39], where the relation of this approach to geometric phases has also been discussed. 

The third and fourth of the PI class potentials, which are the trigonometric versions of 
the second and fifth, respectively, represent an interesting situation. In contrast with the 
three other examples, these potentials are confined to a l i t e d  domain of space, on the 
borders of which they go to infinity, and their energy eigenvalues are not limited from 
above, rather they have a lower l i t .  We also see that the generators J+ and J- have an 
overall imaginary factor i in these two cases. If we absorb this into the functions h(x) ,  g ( x ) ,  
f ( x )  and c ( x )  in (3 .6~)  we find that the group which J+, J- and Jz generate is no longer 
the non-,compact SU(1,l) group, rather it is the compact SU(2) group. This corresponds 
to the change of sign on the right-hand side of (3.lb), which is the result of the change of 
the sign on the right-hand side of (3.7a), due to the absorption of i into the h(x) ,  . . . , c ( x )  
functions. At the same time, the Casimir operator basically changes only by a i2 = -1 
factor (see (3.8)). This explains the different structure of eigenvalues, i.e. the fact that the 
energy eigenvalues are bounded from below, rather than from above. 

The marked differences between the two kinds of these potentials can be interpreted in a 
straightforward way in terms of the difference between the unitary irreducible representations 
of compact and non-compact groups. One apparent difference is that potentials having 
the compact SV(2)  group as a potential group have no scattering states. This is natural 
in view of the structure (as described above) of these potentials, but in terms of group 
theory it is related to the fact that compact groups have no continuous unitary irreducible 
representations. One further difference between the two potential types arises from the 
finite dimensionality of the unitary irreducible representations of the SU(2)  group (and 
of compact groups, in general). This means that for a given j, i.e. for a given energy 
eigenvalue, potential strengths with only Iml < j are allowed. Equation (4.9) also has to 
be modified slightly in this case. 

We mention here that (up to a similarity transformation) the third case (pI(cos(ax))) 
contains the spherical harmonics and the so(3) angular momentum algebra as a special case 
(b = 0), and the compact potential group can also be recognized as the rotation group in 
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this case. Furthermore, the formalism can be generalized to describe rotations in terms of 
the Euler angles by inwoducing a new phase (in fact, angle) variable, and by modifying 
the last term (c(x))  in J* in table 2. In this case the wavefunctions can be looked upon 
as matrix elements of the rotational matrices DA,m(a, B, y ) .  and the physical problem can 
be interpreted as that of the rotating symmetric top (see, for example, [40]). There is, of 
course, no potential present in this case, rather the corresponding terms in the Scbrodinger 
equation are of purely kinematical origin. The originally one-dimensional problem becomes 
a three-dimensional one, and the degeneracy of the energy levels can be explained by the 
rotational symmetry, rather than by the presence of the SU(2) potential group. 

When we apply the standard procedure to the PI1 case defined by the 

(4.11) 

differential equation [161 we find that, although it is possible, in principle, to construct the 
SU(1, 1) ladder operators 

(4.12) 

and the general expression for PI1 class potentials, a situation similar to that in the Coulomb 
(MI) case arises. This is because parameter b is forced to assume m-dependence, and this 
destroys the su(l.1) algebra. This can be avoided only if we restrict this treatment to the 
b = 0 case from the beginning. This, of course, results in less general potentials too. 
We have displayed the actual formulae of V ( x ) ,  E, and % ( x )  for the restricted potentials 
with the general (unspecified) solution y(x) of (4.11), and also for y(x) = tanh(ax) and 
-icot(ux) in table 1. 

These two potentials are nothing but special (symmetric) versions of some PI class 
potentials, however the algebraic structure associated with them is different from the su(l.1) 
and su(2) potential algebras discussed there. As can be seen from table 2, J+ and J- in this 
case leave the potential ( j )  invariant and change n by one unit, i.e. they connect adjacent 
stam of the same potential, therefore we conclude that they form a spectrum-generating 
algebra together with Jz. Similarly to the PI case, here we have two different potential types: 
one which has finite depth and finite number of bound states, and one which is infinitely 
deep and has an infinite number of bound states. This duality manifests itself in the nature 
of the spectrum-generating algebra too: due to the constant i factor it is the compact su(2) 
algebra for the first potential (y(x) = tanh(nx)) which has a finite number of bound states, 
while it is the non-compact su(1,l) algebra for the second one ( y ( x )  = -icot(ax)), which 
has infinite number of them. In the first case the spectrum-generating algebra is practically 
the same as that discussed by Engelfield [41]. 

Note that while, in the PI case, j was related to the energy and m to the potential 
strength, here their roles have been exchanged. 

We mention here that the third of the shape-invariant PI1 class potentials (with y(x) = 
coth(ax)) is missing from our treatment, because the b = 0 restriction cancels the only 
attractive term, therefore this potential has no bound states in the restricted case. This 
repulsive potential can be obtained as a special limiting case from two of the PI class 
potentials, therefore it is possible to describe its scattering states within the framework of 
the non-compact SU(1,l) potential group. 

In contrast with the PI case, the SUSY ladder operators A and At essentially differ 
from J- and J+. In fact, they are the same as the SUSY ladder operators associated to PI 
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potentials restricted to the b = 0 case. (Note that V ( x )  and E, have essentially the same 
form, while the wavefunctions seem to be different. This is, of course, not the case, as the 
two expressions are only alternative ways of writing the same functions see table 1). We 
also note that A and A t  can, of course, be constructed for the general PII class potentials 
too with b # 0, which was found inaccessible for the present algebraic structure. 

Before closing this section we briefly mention the main results obtained for Gegenbauer 
polynomials Cf)(y), which are simply proportional to the Jacobi polynomials [37] 

The differential equation of the Gegenbauer polynomials can be obtained from the following 
differential realization of J+ and J-: 

considering also the relations 

j = -U 

m = - j + n  n = 0, 1,'2, . . . 

(4.13) 

(4.14) 

As expected, the standard procedure recovers those three symmetric (b  = 0) potentials, 
which form a simultaneous subset of the PI and PI1 potential classes. An interesting 
observation is, however, that applying the variable transformations defining the PI class, we 
get spectrum-generating algebras recovered earlier in connection with PII class potentials. 
Also, conversely, we get the restricted version (b = 0) of the potential algebra related to 
PI-type potentials if we employ here the variable transformations defining the PII potential 
class. It was this restricted potential algebra which was first constructed by Alhassid et ai 
[5 ] ,  and it was only realized later 123,261 that it can be extended to the more general PI 
class potentials by introducing a new (non-zero c(x) )  term in J+ and J-. This more general 
algebra, of course, can not be derived from (4.13) by the usual variable and similarity 
transformations. 

5. Summary and conclusions 

Here we have made a systematic search for su(1,l) algebraic structures related to shape- 
invariant potentials by using a specific differential realization of the SU(1,l) generators. 
In particular, the generators were chosen as linear differential operators depending on two 
variables. This realization was inspired by the work of Alhassid etol on the potential-group 
approach [5],  in which the Hamiltonian is expressed in terms of the Casimu operator of 
the potential algebra Noting that there are formal analogies between this approach and 
supersymmetric quantum mechanics, we applied transformations to derive the SchrMinger 
equation for the trivial shape-invariant potentials from the differential equation of orthogonal 
polynomials, within the framework of group theory. The results are summarized in table 4. 
The algebras derived from the procedure described above turned out to play the role of a 
potential algebra or that of a spectrum-generating algebra Whenever it was possible, we 
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Table 4. Summary of su(l, I )  and su(2) algebras related to the trivial shape-invariant potentials, 
and their comparison with lhe corresponding SUSYQM laddering operators. Works in which 
dgcbras wilh difiercntid realizations similar (or closely related) to that considered in our 
approach are also cited. 

~ ~ ~ ~~ 

Class Y ( X )  Potential Specmm generating SUSYQM Operators 
algebra (PA) algebra (son) A, At 

LUI b exp(-ax) su(1, I) [3,5,26,241 - similar to J* of PA 

LI +” - SU( l ,  1) [I81 different from J* of SGA 

HI ( f ) 1 ’ 2 X  - su(l.1) [38,42] different from J* of SGA 

’ exist ~~ U1 $ - - 

PI 
isinh(ar) 4. I) [23. 261 similar to J+ of PA 

cosh(ax) su(l ,  I )  [26] no bound scates forb = 0 similar to J* of PA 
CoS(llX) 4 2 )  sn(l, I ) ,  if b = 0 similar to J* of PA 

cas(2ax) su(2) su(l , l ) ,  if b = 0 similar to J* of PA 
cosh(2ax) su( l .  1) [39] no bound states forb = 0 similar to J* of PA 

tanh(nx) 
coth(ax) 
-icot(ax) 

su(2), if b = 0 [41,26] 

PI1 
b = 0, see pl(i sinh(ax)) 
b = 0. see Pl(cosh(ax)) 
b = 0, see Pt(cos(ax)) 

b = 0, see pl(i sinh(ax)) 
no bound states for b = 0 
b = 0, see Pr(cos(ax)) 

similar to J* of PA for b = 0 
similar to J* of PA for b = 0 
similar to J* of PA forb = 0 

also cited in table 4 earlier works describing these (or similar) algebras. We also gave a 
comparison of the ladder operators J+, J- and the SUSYQM ladder operators A t ,  A.  

Potential algebras have been recovered for two classes of shape-invariant potentials: 
the Llll class (i.e. the Morse potential) and the PI class which contains five individual 
potentials. A characteristic feature of these potentials is that the variable transformation 
y + y ( x )  in (3.9) yields a constant h ( x )  function in the generators J+ and J- (see 
(3.6a)). This then results in a Casimir operator and a ‘null-operator’ which is related 
to the Hamiltonian in a relatively simple way, and immediately recovers the Schrijdinger 
equation. The six potentials mentioned here contain the Morse potential and the modified 
Poschl-Teller potential, the classical examples for the potential-group approach [SI. Some 
more general potentials admitting an SU(1,l) potential group [23,26] are also among those 
listed here. A remarkable finding is that the potential algebra is the compact su(2) N so(3) 
algebra in two cases. This is related to the fact that h(x)  is an imaginary constant in 
these cases. These two potentials have no scattering states, which can be interpreted in 
a straightforward way in terms of the compactness of the potential algebra. One of these 
cases can also be related to rotations in three spatial dimensions, and the corresponding 
compact potential algebra can be viewed as the angular momentum algebra. 

~ 1 1 1 -  and PI-class potentials are the same as type B and A potentials of the facmrization 
method 121 and of the study by Miller [3] based on the Lie theory of special functions. 
In this latter work the G(1,O) = sl(2) @ E algebra is associated to these potential classes, 
which can be considered a generalization of the algebras discussed here. 

Spectrum-generating algebras have been recovered for the LI, HI classes (i.e. the 
harmonic oscillators in lhree and one dimensions) and for special (symmetric, i.e. b = 0) 
cases of PI and PII potentials. A common feature of these algebras is that, in contrast with 
the case of potential algebras, the variable transformation now results in an h(x)  function 
which is different from a constant, and consequently the Hamiltonian has more complicated 
structure (see (3.12)) and does not necessarily commute with the generators. Due to the 
same circumstances, the SUSYQM ladder operators differ from J+ and J- in this case. 

The potentials and algebras obtained in the PI and PI1 cases are practically the same in 
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this case, due to the b = 0 restriction. Similarly to the potential algebra, the spectrum- 
generating algebra can also be compact (su(2)) or non-compact (su(1, I)), and this fact is 
reflected in the number of bound states. 

The eigenstates of the three-dimensional harmonic oscillator belonging to the same 
angular momentum I also form a basis for the irreducible representations of the SU(I.1) 
group generated by the su(1,l) algebra. However, in this approach there are no operators 
connecting states with different I ,  which could be used to enlarge SU(1,l) into a larger 
dynamical group [4]. Similarly, the two SU(I.1) unitary irreducible representations to 
which negative- and positive-parity states of the onedimensional harmonic oscillator belong, 
are also disjoint in this sense: there are no operators in this approach which would ladder 
between states with different parity. We note, however, that the SUSYQM ladder operators 
do connect states of different 1 (in the LI case) and parity (in the HI case), but they do 
not form a potential algebra They are, actually simiiar to some elements of the G(0, l )  
algebra described by Miller [3] in connection with the C’- and D’-type factorizations. In the 
latter case they can also be recognized as the familiar raising and lowering operators, at  
and a, creating and annihilating one quantum of the one-dimensional harmonic oscillator. 
One peculiarity of the SU(1,l) irreducible representations related to the three and one- 
dimensional harmonic oscillators is that j and m are quarter-integers, rather than integers 
or half-integers. This finding is similar to some earlier results 118,381. 

It is remarkable that the si(2, R) ‘v su(1, 1) algebra has also been identified as the 
spectrum-generating algebra of the one-dimensional harmonic oscillator in a study which 
originally aimed at the determination of the ‘maximal kinematical invariance group’ (MKI) 
of the harmonic oscillator, i.e. that of the largest group of coordinate (including time) 
transformations leaving invariant the corresponding ScMdinger equation [42]. In this 
context the auxiliary phase variable 4 can be related to the time variable. A similar analysis 
of some other potentials has also been carried out 1431, and the results have been generalized 
to the formalism of SUSYQM [44] as well. Apart from the harmonic oscillator, however, 
the algebraic structures (MKIS) found in this way can not be linked to our realization of the 
su(l.1) algebra. 

We have identified a potential algebra and/or a spectrum-generating algebra for eight 
of the twelve hivial shape-invariant potentials. In case of the PI1 class (or type E [2 ,3 ] )  
potentials such algebras could only be constructed for the symmetric (b = 0) caSe in this 
approach, while the Coulomb problem in three dimensions, i.e. the LII (or type F [2,3]) class 
tumed out to be inaccessible for the present study. These two classes are related to 16 in 
Miller’s approach [3], which is the Lie algebra of the Euclidean group in three dimensions. 
This author discusses two more factorization types (C” and W‘) with the underlying G(0,O) 
Lie algebra, but these do not represent shape-invariant potentials, rather they correspond 
to free motion in three and one dimension, and are related to the Bessel and exponential 
functions. 

The algebras discussed here can be embedded into some larger algebras. This is the case 
with the pr(isinh(ax)), Pl(cosh(ax)) and LIII potentials, where the s0(2,2),  iso(2, 1) and 
so(3,l) dynamical potential algebras have been identified [26]. The Pl(cosh(2ax)) potential 
is related to the SO(2.2)  potential group [13,14], while the LI potential, i.e. the three- 
dimensional harmonic oscillator, has N(3)  @ Sp(6, R )  or SU(3,l) as possible dynamical 

The present work can be generalized in various directions. Here we have considered 
only one possible differential realization of the SU(1.1) generators. Other realizations 
of this algebra are also known. Corder0 et ai [121 considered a Hamiltonian which is 
a linear (rather than quadratic) form of the generators. Examples for a similar differential 

groups PI .  
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realization of the su(1,l) algebra can also be found in [4,25,25,45], where potentials related 
to the generalized Laguerre polynomials have been discussed. Miller [3] also proposed an 
altemative realization of the algebras G(1.0). G(0,l) and B(O.0) in terms of one variable 
(rather than two variables). A similar systematic study of these approaches could also 
be worthwhile, as it could probably reveal new algebraic structures related to solvable 
potentials. Considering larger algebras from the beginning and applying the same procedure 
to them could also be instructive. 

Finally, generalizing the results to non-shape-invariant potentials could help us to relate 
algebraic sbxctures to some less well known potentials. This would require more general 
variable transformations y + x ( y )  of the generators. Starting from the differential equation 
of the Gegenbauer polynomials for example, a transformation of this kind recovers the 
Ginwhio potential 1361 associated with an su(1,l) potential algebra [22]. However, as 
we have already mentioned, this procedure does not guarantee the existence of an su(1,l) 
potential algebra or any other algebra related to the transformed potential, as in certain 
circumstances the transformations may destroy the original algebraic structure. Neveaheless, 
OUT approach helps to select those more general transformations which preserve the su(1,l) 
algebra. Therefore a systematic study of these non-shape-invariant potentials seems to be 
necessary to decide which of their subclasses can be related to algebraic structures in our 
approach. 

Acknowledgments 

The author thanks the IIE Fulbright Program for a research fellowship and Professor 
F Iachello for his hospitality at Yale University. This work was also supported by the 
OTKA grant no F4303. 

References 

[I] S c W i g e r  E 1940 Pmc. R. Irish Acad. A 46 9, 183; 1941 Prm. R. Irish A d  A 47 53 
[21 lnfeld L and Hull T E 1951 Rev. Mod. Phys. 23 21 
[3] Miller W Jr 1968 Lie Theov ond Special Funcrionr (New York Academic) 
[4] Wyboume B G 1974 Classical Groups for Physiclsrs (New York Wdey) 
[SI Alhassid Y. GGrsey F and Iachello F 1983 Phys. Rev. Lert 50 873; 1983 A m  Phys., NY 148 346; 1986 

161 Wiltem E 1981 Nucl. Phys. B 188 513 
Cooper P and Freedman B 1983 Ann. Phys., NY 146 262 
Andrianov A A, Borisov N V and loffe M V 1984 Phys. Lett. 105A 19 
Sukumar C V 1985 I. Phys. A: M d .  Gen. ,I8 2917 

[71 Montemayor R and Salem L D 1989 Phys. Rev. A 40 2170 
181 Darboux G 1882 C. R. Acad. Sci Paris 94 1456 
[9] Uvai  G 1993 I n t e ~ b a l  Symposium on Quantum Inversion T h o v  ond Applications (Lecture Notes in 

[IO] Bhamhajie A and Sudarshan E C G 1962 Nuovo Cimento A 25 864 
[I11 Natanzon G A 1979 Teor. M ~ t . ' f i  38 146 
1121 Cordem P, Hojman S, Fudan P and Ghirardi G C 1971 Nuovo Cimnto A 3 807 
[I31 Wu J, Alhassid Y and Giirsey F 1989 A m  Phys., NY 196 163 
[I41 Wu J and Alhassid Y 1990 J. M ~ t h  Phys. 31 557 
1151 Coooer F. Ginocchio J N and Khare A 1987 Phrs. Rev. D 36 2458 

Ann. Phys., NY 167 181 

Physics 427) ed H V von Guamb (Berlin: Springer) p 107 

. .  . .  
[I61 Uvd G 1989 J, Phys. A: Math. Gen 22 689 
1171 Gendenshtein LE 1983 Ur E ~ S D .  Teor. Fiz Pis. 38 299 (Bnd. Wand. JETP Len. 38 3.56) . ~ .  ~ ~ 

[18] Annshrmg L Jr 1971 J. Math. Pkys. 12 953 



3828 G Lkvai 

[I91 Armstrong L Jr 1971 Phys. Rev. A 3 1546 
[ZO] Chacdn 6, Levi D and Moshinsky M 1976 1. Math Phys. 17 1919 

1 and Paldus J 1977 I ~ L  1. Quanrum Chem. 12 875 
[211 Benondo M and Palma A 1980 J. Phys. A: Math Gen. 13 773 
[22] Alhassid Y, Iachello F and Levine R D 1985 Phys. Rev. Len. 54 1746 
[231 Sukumar C V I986 1. Phys. A: Math Gen. 19 2229 
[%I Cooper I L 1993 1. Phys. A: Mark Gen. 26 1601 
[E] Cordem P and Salam6 S 1991 1. Phys. A: Math Gen. 24 5299 
[261 Engelfield M J and Quesne C 1991 1. Phys. A: Math. Gen 24 3557 
[271 Benondo M, Palma A and Ldpez-Bonilla J L 1987 Inf. 1. Quonrrrm Chem. 31 243 
I281 M o s h i n s ~  M. Quesne C and Loyola G 1990 Ann Phys., NY 198 103 
[29] Bohm A, Ne'eman Y and Barut A 0 (eds) 1988 Dynamical Groups and spectrum-generating Algebras 

(301 Dun R. marc A and SukhaUne U P 1986 Phys. Len. 181B 295 
[311 Barclay D T and Maxwell C J 1991 Phys. LetL 157A 357 

Levai G 1992 1. Phys. A: Math. Gen W U21 
[321 Barclay D T, Dun R Gangopadhyaya A. Khare A. Pagnamenta A and Sukhatme U 1993 Phys. Rev. A 48 

Khare A and Sukhatme U P 1993 1. Phys. A: Math. Gen. 26 L901 
[331 Uvai G 1991 1. Phys. A: Math. Gen 24 131 
[34] Uvai  G and Williams B W 1993 1. Phys. A: Math. Gcn 26 3301 
[351 Wu J 1985 PhD thesis Yale University (unpublished) 
[36] Ginocchio J N 1984 Ann Phys... NY 152 203 
[37] Abnmowitz M and Stegun I 1970 Hondbook of Mnthemntical Functions (New York Dover) 
[38] Bauy Hand Richard J L 1967 1. Math Phys. 8 2230 
[39] Uvay P and Apagyi B 1993 Phys. Rev. A 47 823 
[40] Biedenham L C and b u c k  I D 1981 Angular Momenrum in Quantum Physics (Reading, MA: Addison- 

[411 Engelfield M J 1987 J. Math Phys. 28 827 
[421 Niederer U 1973 Helv. Phys. Acrn 46 191 
[431 Boyer C P 1974 Helv. Phys. Acta 47 589 
[441 Beckers I, Debergh Nand Nikitin A G 1992 1. M m h  Phys. 33 152 
[45] Brajamani S and Singh C A  1990 1. Phys. A: Math Gen 23 3421 

(Singapore: World Scientific) 

2786 

Wesley) 


